Skip to main content

Table 2 Comparison of log-likelihood, AIC, BIC, autocorrelation, moving average, and Sigma coefficients of different models for selecting the best-fitted model in forecasting census numbers

From: Time series analysis for forecasting neonatal intensive care unit census and neonatal mortality

 

Log likelihood

AR

(SE)

MA

(SE)

Seasonal

Sigma

(SE)

AIC

BIC

AR

(SE)

MA

(SE)

D2.ln. smooth census number = ARIMA (1,2,1) SARIMA (1,0,1,4)

69.65

0.939

(0.172)

-0.829

(0.229)

0.116

(0.149)

-0.799

(0.195)

0.101

(0.006)

-140.49

-93.54

D2.ln.smooth census number = ARIMA(4,2,1)SARIMA(1,0,1,4)

65.25

-0.885

(0.142)

0.999

(0.109)

-0.921

(0.129)

0.771

(0 0.233

0.096

(0.931)

-105.54

-95.33824

D2.ln.smooth census number = ARIMA(1,2,1)SARIMA(4,0,1,4)

60.19

0.908

(0.205)

-0.032 (0.0693)

0.099 (0.007)

0.498

(0 0.663)

0.108

(0.693)

-107.38

-95.83

D2.ln.smooth census number ARIMA(1,2,4) SARIMA(1,0,1,4)

67.25

− 0.489

(0.565)

-0.756

(0.289)

-0.917

(0 0.149)

0.779

(0 0.301)

0.099

(0.025)

-118.35

-99.50

  1. *Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)