Skip to main content

Table 3 Comparison of log-likelihood, AIC, BIC, autocorrelation, moving average, and Sigma coefficients of different models for selecting the best-fitted model in forecasting of hospitalization days

From: Time series analysis for forecasting neonatal intensive care unit census and neonatal mortality

 

Log likelihood

AR(SE)

MA(SE)

Sigma(SE)

AIC

BIC

LN. smooth length of stay SARIMA (1,0,4,4)

51.17

0.563

(0.173)

0.487(0.58)

0.119

(0.530)

-88.342

-71.33

LN. smooth length of stay SARIMA (4,0,1,4)

48.91

0.563 (0.173)

− 0.426 (0.99)

0.0.113

(0.530)

-92.19

-76.19

LN. smooth length of stay SARIMA (1,0,1,4)

45.88

-0.153

(0.454)

0.462 (0.376)

0.139

(0.013)

-83.77

-74.04

LN. smooth length of stay SARIMA (4,1,4,4)

54.09

− 0.519 (0.225)

0.179 (0.523)

0.0958

(0.029)

-83.82

-73.14

LN. smooth length of stay SARIMA (4,1,1,4)

49.26

-0.294 (0.163)

-1.000009 3121.368

0.118

(0.592)

-84.501

-67.839

LN. smooth length of stay SARIMA (1,1,1,4)

45.44

0.125 (0.127)

-1

0.128

(0.011)

-84.88

-77.74

LN. smooth length of stay SARIMA (1,1,4,4)

51.17

-0.789 (0.258)

-0.426 (0.1)

0.119

(0.530)

-86.29

-71.99

  1. *Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)