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Abstract 

Background  Congenital heart disease (CHD) affects approximately 1% of newborns and is a leading cause of mortal‑
ity in early childhood. Despite the importance of early detection, current screening methods, such as pulse oximetry 
and auscultation, have notable limitations, particularly in identifying non-cyanotic CHD. (AI)-assisted electrocardiog‑
raphy (ECG) analysis offers a cost-effective alternative to conventional CHD detection. However, most existing models 
have been trained on older children, limiting their generalizability to infants and young children. This study devel‑
oped an AI model trained on real-world ECG data for the detection of hemodynamically significant CHD in children 
under five years of age.

Methods  ECG data was retrospectively collected from 1,035 patients under five years old at Chang Gung Memorial 
Hospital, Taoyuan, Taiwan (2013–2020). Based on ECG findings, patients were categorized into the following groups: 
normal heart structure (NOR), non-significant right heart disease (RHA), significant right heart disease (RHB), non-
significant left heart disease (LHA), and significant left heart disease (LHB). ECG signals underwent preprocessing 
using continuous wavelet transformation and segmentation into 2-s intervals for data augmentation. Transfer learn‑
ing was applied using three pre-trained deep learning models: ResNet- 18, InceptionResNet-V2, and NasNetMobile. 
Model performance was evaluated in terms of accuracy, sensitivity, specificity, F1 score, and area under the receiver 
operating characteristic curve (AUC).

Results  Among the tested models, the model based on ResNet-18 demonstrated the best overall performance 
in predicting clinically significant CHD, achieving accuracy of 73.9%, an F1 score of 75.8%, and an AUC of 81.0% in dif‑
ferentiating significant from non-significant CHD. InceptionResNet-V2 performed well in detecting left heart disease 
but was computationally intensive. The proposed AI model significantly outperformed conventional ECG interpreta‑
tion by pediatric cardiologists (accuracy 67.1%, sensitivity 71.6%).

Conclusions  This study highlights the potential of AI-assisted ECG analysis for CHD screening in young children. The 
ResNet-18-based model outperformed conventional ECG evaluation, suggesting its feasibility as a supplementary 
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tool for early CHD detection. Future studies should focus on multi-center validation, inclusion of more CHD subtypes, 
and integration with other screening modalities to improve diagnostic accuracy and clinical applicability.

Keywords  Congenital heart disease, Electrocardiogram, Artificial intelligence, Continuous wavelet transformation, 
Cardiac screening

Background
Roughly 1% of all newborns present with congenital 
heart disease (CHD) [1, 2], and most CHD-related mor-
talities occur before the age of five, making early detec-
tion crucial. Echocardiography is the gold standard for 
diagnosing CHD; however, it is an expensive procedure 
requiring highly trained personnel. Several methods have 
been devised for CHD detection. Pulse oximetry per-
formed at 24 h after birth is a cost-effective alternative for 
the screening of critical cyanotic congenital heart con-
ditions that require intervention [3]. One meta-analysis 
reported that this method achieves sensitivity of 76.3% 
with specificity of 99.9% and a false positive rate of 0.14% 
[4]. However, this method fails to detect common non-
cyanotic CHDs, such as ventricular septal defect (VSD) 
and patent ductus arteriosus (PDA) [3]. Left heart disease 
can have a profound impact on hemodynamics, leading 
to early heart failure. Companion screening methods are 
required to enhance sensitivity to noncyanotic CHDs.

Auscultation for the detection of heart murmurs is 
the method most commonly used by pediatricians in 
screening for major CHDs. Detecting heart murmurs 
of > grade 2 has been shown to yield sensitivity of 89.6% 
with specificity of 97.3% and a false positive rate of 2.7% 
[5]. While heart murmur analysis is effective in dealing 
with most CHDs associated with left heart disease, it is 
far less effective in detecting CHDs associated with right 
heart disease, such as atrial septal defects, which often 
do not produce heart murmurs [6]. Moreover, access to 
trained pediatricians is often limited to major medical 
centers, and the associated costs are very high. There is a 
demand for screening tools applicable to a broader range 
of CHDs.

Researchers have made significant strides in applying 
artificial intelligence (AI) to the interpretation of phono-
cardiograms (PCG) for the detection of common CHDs. 
Some models have achieved sensitivity of 99.0% with 
specificity of 98.0% and a false positive rate of 2.0% [7]. 
However, these preliminary studies were based on well-
prepared datasets, raising concerns about the practical 
applicability of this method under real-world conditions.

Electrocardiogram (ECG) analysis is another method 
commonly used for the screening of congenital heart 
disease. This affordable method provides objective meas-
urements of electrical activity, avoiding the subjective 
interpretation of indistinct indicators by clinicians. ECG 

also enables the detection of conditions that do not pro-
duce an audible heart sound, such as atrial septal defect 
(ASD), where ECG indicators occur earlier than heart 
murmurs.

Table 1 lists representative studies on the screening of 
congenital heart disease [4, 7–13]. One AI model dem-
onstrated good performance in detecting hemodynamic 
atrial septal defect (Qp/Qs > 1.5) with sensitivity of 76%, 
specificity of 96% and a false positive rate rate of 2.0% in 
school-aged children [8]. Another AI model trained using 
a large ECG database for the detection of CHD demon-
strated sensitivity of 74.7% and specificity of 94.1% [14].

It is important to note that most of the training data 
assembled for these models was from school-aged chil-
dren and adolescents [12]. Moreover, many of these stud-
ies did not include demographic data or address the issue 
of hemodynamic significance.

There is a pressing need for affordable and accessible 
screening methods for the detection of non-critical, but 
clinically significant CHDs in early childhood. This study 
trained an AI model using real-world ECG data to detect 
the presence of clinically significant CHDs in children 
under the age of five.

Participants and methods
Data sources
Patient data were collected retrospectively from Chang 
Gung Memorial Hospital, Taiwan. The study included 
patients under five years old who were diagnosed with 
specific CHDs, including atrial septal defect (ASD), ven-
tricular septal defect (VSD), patent ductus arteriosus 
(PDA), pulmonary stenosis (PS), aortic stenosis (AS), 
coarctation of the aorta (CoA), and Tetralogy of Fallot 
(TOF) between January 2013 and December 2020. Data 
were also collected from patients under five years old 
who had normal heart structure (confirmed by ECG) and 
visited the outpatient department between December 
2020 and March 2021.

Patient grouping process
Initial patient enrollment (Fig. 1) was followed by classifi-
cation based on the presence of congenital heart disease 
(CHD). Patients without CHD were categorized into the 
NOR (normal) group. Those diagnosed with CHD under-
went further stratification based on electrocardiographic 
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(ECG) signals. Patients with CHDs causing left ventricu-
lar hypertrophy (LVH) were classified under Left Heart 
Disease (LHD), while those with patients with CHDs 
that causing right ventricular hypertrophy (RVH) were 
categorized as Right Heart Disease (RHD). Within these 
groups, disease severity was further assessed according 
to clinical significance. The criteria for determining clini-
cal significance are outlined in Table 2.

Below, we present the criteria used for classifying con-
genital heart diseases according to severity and assessing 
clinical significance:

•	 Atrial Septal Defect (ASD) [15]: Defects measuring 
< 5 mm were classified as small lesions with an 87% 
likelihood of spontaneous closure, typically managed 
by observation and regular follow-up.

•	 Pulmonary Valve  Stenosis (PS) [16]: Echocardio-
graphic findings indicating a pulmonary artery flow 
velocity of < 3 m/s were categorized as mild pulmo-
nary stenosis, typically managed by observation and 
follow-up.

•	 Tetralogy of Fallot (TOF): A common cyanotic con-
genital heart disease with a significant impact on car-
diac function and infant growth, necessitating cor-
rective surgery.

•	 Ventricular Septal Defect (VSD) [17]: Small defects 
(< 4 mm) are more likely to undergo spontaneous 
closure than are larger defects.

•	 Patent Ductus Arteriosus (PDA) [18]: Small lesions 
(< 2 mm) can be treated via transcatheter coil occlu-
sion. Larger lesions (> 2 mm) can have a significant 
impact on hemodynamics, requiring closure via tran-
scatheter device placement.

•	 Aortic Valve Stenosis (AS) [19]: An aortic flow veloc-
ity of > 3 m/s indicates moderate aortic stenosis, 
which can impair ventricular diastolic function.

•	 Coarctation of the Aorta (CoA) [20]: A flow velocity 
of roughly 3 m/s corresponds to a pressure gradient 
of ~ 40 mmHg, which is associated with significant 
coarctation, as verified by cardiac catheterization and 
angiography.

Patients in the LHD group were divided into two sub-
groups: those with non-significant left heart disease 
(LHA) and those with significant left heart disease (LHB). 
Similarly, patients in the RHD group were classified into 
RHA (non-significant right heart disease) and RHB (sig-
nificant right heart disease). The grouping methodology 
used in this study is illustrated in Fig. 1.

Table 1  Representative literature on the screening of congenital heart disease

Study Study Population Methodology Key Results Limitations

Plana et al. (2018) [4] Meta-analysis (n = 457,202) Pulse oximetry Sensitivity: 76.3%
Specificity: 99.9%

Detected only critical cyanotic 
heart disease

Lv et al. (2021) [9] 1,362 CHD children requiring 
surgery

AI based heart sound 
analysis

Accuracy: 98%
Sensitivity: 91%
Specificity: 97%

Unable to identify CHDs with‑
out significant murmur

Xu et al. (2022) [10] Children aged 2 days to 12 
years (408 CHD, 553 controls)

AI-based heart sound 
analysis

Accuracy: 95%
Sensitivity: 94%
Specificity: 96%

Detected CHD with heart mur‑
murs, while overlooking CHDs 
without murmur

Liu et al. (2022) [11] Children (475 CHD, 409 
controls)

AI-based heart sound 
analysis

Accuracy: 83%
ASD detection accuracy: 
65%

Poor performance in ASD 
detection, due to variations 
in ECG caused by factors, 
such as right heart pressure 
and defect size

Alkahtani et al. (2024) [7] 583 PCG from local database 
and 23 ECG from public 
database

AI-based heart sound 
analysis

Accuracy: 98.6%
Sensitivity: 99.0%
Specificity: 98.0%

Binary classifications (Normal 
vs. abnormal). Patient age 
not specified

Du et al. (2020) [12] 68,969 ECGs (58,624 Non-
CHD and 10,345 CHD)

AI-based ECG analysis Sensitivity: 74.7%
Specificity: 94.1%

Demographic of CHD patients 
not specified. Patient age 
not specified

Mori et al. (2021) [8] Children aged 6–18 (364 
ASD, 828 normal)

Deep learning-based ECG 
analysis

Accuracy: 0.89
Specificity: 0.96
F1 Score: 0.81

Focus on school-aged children
Included only ASD patients

Liu et al. (2023) [13] Adults (1,196 ASD, 21,430 
controls)

AI-based ECG analysis Accuracy: 0.86
Specificity: 0.87
AUC: 0.88

Focus on adults with no data 
from infants or young children. 
Did not address hemodynam‑
ics
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Fig. 1  Flowchart illustrating the process of classifying infants and children into five groups based on the characteristics of congenital heart disease 
(CHD) and hemodynamic significance: normal heart structure (NOR), non-significant left heart disease (LHA), significant left heart disease (LHB), 
non-significant right heart disease (RHA), and significant right heart disease (RHB)

Table 2  Significance criteria for common congenital heart diseases

Screening Category Condition Significant 
Impact

Significance Criteria (Potential for Further Evaluation or Treatment)

Normal Cardiac Structure —— —— ——

Right Heart Diseases Atrial Septal Defect (ASD) No Lesion < 5 mm

Yes Lesion ≥ 5 mm or Right heart enlargement

Pulmonary Stenosis (PS) No Trans-pulmonary valve Vmax < 3.0 m/s

Yes Trans-pulmonary valve Vmax ≥ 3.0 m/s (Potential need for further evaluation)

Tetralogy of Fallot (TOF) Yes Echocardiographic report confirms TOF diagnosis

Left Heart Diseases Ventricular Septal Defect (VSD) No Lesion < 4 mm

Yes Lesion ≥ 4 mm or Left heart enlargement

Patent Ductus Arteriosus (PDA) No Lesion < 2 mm

Yes Lesion ≥ 2 mm or Hemodynamically significant impact

Aortic Stenosis (AS) No Trans-aortic valve Vmax < 3.0 m/s

Yes Trans-aortic valve Vmax ≥ 3.0 m/s (Potential need for further evaluation)

Coarctation of the Aorta (CoA) No Trans-aortic flow velocity < 3.0 m/s

Yes Trans-aortic flow velocity ≥ 3.0 m/s (Potential need for further evaluation)
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Model construction
To develop a machine learning model capable of detect-
ing CHDs of clinical significance, we established the fol-
lowing classification frameworks based on ECG data:

1.	 Right heart disease:

◦ Model 1: NOR vs. (RHA + RHB) – To predict the 
presence of total right heart disease (RHD).
◦ Model 2: (NOR + RHA) vs. RHB – To predict the 
presence of significant right heart disease (RHB).

2.	 Left heart disease:

◦ Model 3: NOR vs. (LHA + LHB) – To predict the 
presence of total left heart disease (LHD).
◦ Model 4: (NOR + LHA) vs. LHB – To predict the 
presence of significant left heart disease (LHB).

3.	 Significant CHD:
◦ Model 5: (NOR + RHA + LHA) vs. (RHB + 
LHB) To predict congenital heart disease of clini-
cal significance.

Data acquisition
For each patient, 12-lead resting ECG signals were 
recorded using a GE MAC 5500 HD device (GE Health-
care, Chicago, Illinois, USA). ECGs were collected in 
a calm and resting state to minimize motion artifacts. 
Asmall group of senior technicians (> 20 years of experi-
ence) performed all ECG acquisitions to ensure consist-
ency. ECG signals were recorded at a sampling rate of 500 
Hz for 10 s and stored in XML format within the MUSE 
Cardiology Information System.

To facilitate analysis, the XML files were converted to 
CSV format using Python within the Anaconda Prompt 
environment (Austin, Texas, USA). The CSV files were 
subsequently imported into MATLAB 2022b (Natick, 
Massachusetts, USA), where they underwent continu-
ous wavelet transformation (CWT) based on the Morlet 
wavelet to generate time–frequency spectrograms. The 
transformed spectral data were then saved in MAT for-
mat for further processing.

To maximize data utilization, each 10-s ECG record-
ing was segmented into five 2-s overlapping segments, 
thereby increasing the number of samples. Each 2-s seg-
ment was represented as a 12 × 1000 matrix, with each 
row corresponding to one of the 12 ECG leads (I, II, III, 
aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) and each col-
umn representing a time point.

Each ECG segment was labeled according to patient 
classification (Normal, Non-significant Right Heart Dis-
ease, Significant Right Heart Disease, Non-significant 

Left Heart Disease, Significant Left Heart Disease). All 
data were cross-checked by pediatric cardiologists to 
ensure data quality and correct labeling. Preprocessed 
ECG data and spectrograms were stored in MAT format 
for model training and analysis.

This preprocessing workflow was meant to ensure 
high-quality spectral representations of ECG signals and 
optimize the data for machine learning analyses. Repre-
sentative examples of ECG waveforms and their corre-
sponding time–frequency spectrograms are illustrated in 
Fig. 2.

Signal preprocessing [21, 22]
To ensure high-quality ECG signal processing, the fol-
lowing pre-processing techniques were applied:

Signal pre‑processing:

1.	 Baseline wander removal:

•	Baseline drift, typically caused by patient move-
ment or respiration, was removed using a high-
pass filter with a cutoff frequency of 0.5 Hz.

•	This eliminated slow-varying components, while 
preserving diagnostically relevant QRS and ST 
segments.

2.	 Powerline interference reduction:
•	 AC noise contamination due to powerline interfer-

ence (60 Hz in Taiwan) was suppressed by applying 
a notch filter centered at 60 Hz.

3.	 Low-pass filtering:
•	 High-frequency noise was attenuated using a low-

pass filter with a cutoff frequency of 100 Hz to 
eliminate high-frequency artifacts while preserving 
ECG components of clinical relevance.

4.	 Segmentation:

•	Each 10-second ECG recording was divided 
into five non-overlapping 2-second segments to 
enhance data diversity and improve model train-
ing.

•	Each segment retained the original 500 Hz sam-
pling rate, forming a 12 × 1000 matrix (12 leads × 
1000 time points).

5.	 Continuous Wavelet Transform (CWT):
	 The CWT of a signal x (t) is defined as follows:

W (a, b) =
∞

−∞

x(t)ψ∗
t − b

a
dt
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	 where W (a, b) represents the wavelet coefficient at 
scale a and position b; a > 0 is the scale parameter 
controlling the dilation or compression of the wave-
let; b ∈ R is the translation parameter determining 
the shift along the time axis; and ψ (t) is the mother 

wavelet function, and ψ ∗ (t) denotes its complex 
conjugate.

	 Morlet Wavelet (Mother Wavelet):
	 This study selected the Morlet wavelet due to its abil-

ity to balance time and frequency localization in the 
analysis of ECG signals. It is expressed as

Fig. 2  Examples of 12-lead ECG and corresponding continuous wavelet transform time-frequency diagrams (upper limit of 2 × 105): (2 A) infant 
with normal heart structure with (2B) corresponding time-frequency diagram; (2 C) infant with right heart disease (tetralogy of Fallot) with (2D) 
corresponding time-frequency diagram, where leads V2 and V3 exhibit signals of the highst intensity; (2E) infant with left heart disease (patent 
ductus arteriosus) with (2 F) corresponding time-frequency diagram where leads V3 - V5 exhibit signals of highest intensity
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	 where f0 is the central frequency of the wavelet; σ 
determines the time-domain spread; and t represents 
time.

6.	 Normalization:
•	 CWT spectrogram values were normalized to 

a range of [0, 1] to facilitate stable and efficient 
model training.

7.	 Artifact removal:
•	 Segments with excessive noise or loss of lead con-

tact (e.g., flatline or irregular spikes) were manu-
ally excluded by an experienced technician prior 
to feature extraction.

Model training
MATLAB 2022b (Natick, Massachusetts, USA) was uti-
lized for model training. Transfer learning was imple-
mented using three pre-trained convolutional neural 
networks (CNNs): ResNet- 18 [23], InceptionResNet-
V2 [24], and NasNetMobile [25]. The third-to-last 
fully connected layer of each model underwent output 
size modification, and the final classification layer was 
replaced to accommodate the patient groups in this 
study.

To ensure a balanced dataset, 80% of the data were allo-
cated to the training set, while the remaining 20% were 
designated as the test set. To maintain consistency across 
sets, we calculated the modulo of our data, ensuring that 
all ECG samples from the same patient were assigned to 
the same set.

Below, we outline the hyperparameter settings 
employed in the training of ResNet- 18, InceptionResNet-
V2, and ASNetMobile as well as the rationale behind 
their selection.

•	 Optimizer: We employed the Stochastic Gradient 
Descent with Momentum (SGDM) as an optimizer, 
as it provides a good balance between stability and 
convergence speed. It is widely used in medical image 
and signal processing tasks involving deep learning.

•	 Initial learning rate = 0.001: This is a common set-
ting for transfer learning, allowing fine-tuning of pre-
trained models without drastic parameter updates.

•	 Momentum = 0.9: This value was selected to accel-
erate convergence by dampening oscillations during 
gradient updates.

•	 L2 regularization = 0.1: This value was selected to 
prevent overfitting, considering the relatively small 
size of our image dataset.

ψ (t) = ej2π f0t e
−t2

2σ2
•	 Minibatch size = 8: This value is meant to balance 

computational efficiency and convergence stability 
under GPU memory constraints.

•	 Training = 5 epochs: We limited the number of train-
ing epochs because the models had been pre-trained 
on large datasets, and experiments revealed a plateau 
in performance after a few epochs, suggesting that 
prolonged training could lead to overfitting.

•	 Validation: five-fold cross-validation was employed 
to ensure robust model performance without exces-
sive dependence on any particular data partition.

Figure 3 Outlines the preprocessing and training work-
flow. All computation was performed using a custom-
assembled workstation, equipped with an Intel Core i9 
- 13900 K CPU, 128GB of RAM, and an Nvidia GeForce 
RTX 4090 GPU to ensure high-performance.

Model evaluation
Model performance was assessed by comparing the 
predicted results with clinical reports generated by a 
pediatric cardiologist. According to rule based crite-
ria proposed by Society Guideline [26, 27], an ECG was 
classified as abnormal if the clinical report indicated the 
presence of atrial or ventricular hypertrophy.

Statistical analysis
After model training, confusion matrices were generated 
to assess the performance of our model using the follow-
ing metrics: accuracy, sensitivity, specificity, F1 score, 
and area under the receiver operating characteristic 
curve (AUC). The performance metrics are based on four 
components from the confusion matrix used in binary 
classification: true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). The formulas used 
to derive the performance metrics are as follows:

The results are reported as the mean, standard devia-
tion, and 95% confidence interval derived from five-fold 
cross-validation. All statistical analysis was performed 
using MATLAB 2022b and Microsoft Excel.

Ethical approval
All methods in this study were performed in strict 
accordance with the Declaration of Helsinki. This study 
was approved by Institutional Review Board (IRB) of 
Chang Gung Medical Foundation (Reference number: 
202102195B0). Due to retrospective design of this study, 

Accuracy =
True positive(TP)+True negative(TN )

TP+TN+false positive(FP)+false negative(FN )

Sensitivity = TP
TP+FN

Specificity = TN
TN+FP

F1score = 2TP
2TP+FP+FN
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Fig. 3  Process of training and classification: 10-second ECGs were first exported from MUSE in XML format for conversion into CSV format 
within a Python environment. The CSV files were imported into MATLAB to undergo continuous wavelet transform. Oversampling was performed 
by segmenting the initial ECG segments into fie 2-second intervals. The dataset was then split into a training set (80% of the ECG data) 
and a test set (the remaining 20%). Model training and 5-fold cross-validation were conducted using three pre-trained architectures: ResNet- 18, 
InceptionResNet-V2, and NasNetMobile. Performance was evaluated in terms of accuracy, sensitivity, specificity, F1 score, and area under the ROC 
curve (AUC)
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the IRB committee waived the need for participant 
consent.

Results
This study examined 1,035 patients aged 0 to 5, includ-
ing 234 (22%) with normal heart structure (NOR), 100 
patients (10%) with non-significant right heart disease 
(RHA), 291 patients (28%) with significant right heart 
disease (RHB), 141 patients (14%) with non-significant 
left heart disease (LHA), and 269 patients (26%) with sig-
nificant left heart disease (LHB).

The age distribution was as follows: 0 years old (416 
patients; 40.2%), 1 year (249 patients; 24.1%), 2 years (164 
patients; 15.8%), 3 years (99 patients; 9.6%), and 4 years 
(107 patients; 10.3%). Table 3 lists the distribution of case 
numbers and the mean age in each group.

The mean age varied across groups, with the highest 
mean age in the RHB group (24.4 ± 18.8 months, 95% CI: 
22.2–26.6 months) and the lowest mean age in the LHB 
group (16.1 ± 15.2 months, 95% CI: 14.3–18.0 months). 
The NOR and LHA groups presented similar age dis-
tributions, while the mean age in the RHA group was 
slightly lower than in the NOR group (ANOVA P < 0.05). 
Figure 4 illustrates the distributions of heart disease types 
and ages, and Table  4 presents a detailed breakdown of 
heart defects in the dataset.

In detecting total right heart disease (NOR vs RHA 
+ RHB), the model derived from InceptionResNet-V2 
presented the best overall performance, with accuracy of 
0.707 ± 0.027 (95% CI: 0.656—0.758), F1 score of 0.772 
± 0.035 (95% CI: 0.704—0.773), and AUC of 0.758 ± 0.027 
(95% CI: 0.725—0.791). In detecting clinically significant 
right heart disease (NOR + RHA vs RHB), the model 
derived from ResNet- 18 presented the best performance, 
with accuracy of 0.789 ± 0.009 (95% CI: 0.778—0.799), F1 
score of 0.770 ± 0.014 (95% CI: 0.704—0.773), and AUC 
of 0.852 ± 0.011 (95% CI: 0.838—0.866).

In detecting total left heart disease (NOR vs LHA 
+ LHB), the model derived from InceptionResNet-V2 
presented the best performance, with accuracy of 0.710 
± 0.011 (95% CI: 0.697—0.724), F1 score of 0.737 ± 0.008 
(95% CI: 0.727—0.747), and AUC of 0.802 ± 0.019 (95% 
CI: 0.802 ± 0.019). In detecting significant left heart dis-
ease (NOR + LHA vs LHB), the model derived from 
InceptionResNet-V2 presented the best performance, 

with accuracy of 0.744 ± 0.033 (95% CI: 0.704—0.785), F1 
score of 0.695 ± 0.035 (95% CI: 0.652—0.738), and AUC 
of 0.816 ± 0.035 (95% CI: 0.773—0.859). The results are 
detailed in Table 5.

To simulate the conditions typically encountered in 
daily practice, we combined right and left heart diseases 
into one group. In this analysis, the model derived from 
ResNet- 18 achieved the best performance, with accuracy 
of 0.739 ± 0.012 (95% CI: 0.724—0.753), F1 score of 0.758 
± 0.015 (95% CI: 0.740—0.776), and AUC of 0.810 ± 0.013 
(0.794—0.825). Figure  5 presents a boxplot for these 
results of five-fold cross-validation. Comprehensive loss 
curves are presented in Supplementary Fig. 1.

The average elapsed time for model training was as fol-
lows: InceptionResNet V2 (33 min 12 secs), ResNet- 18 (7 
min 27 secs, and NasNetMobile (51 min 46 secs). These 
results are detailed in Table 6.

The performance metrics in the ECG reports generated 
by a pediatric cardiologist for the current dataset were 
as follows: accuracy 0.671, sensitivity 0.716, specificity 
0.648, F1 score 0.702. Overall, the proposed AI model 
proved superior to current best practices in screening for 
clinically significant congenital heart disease based on 
ECG vector changes.

Discussion
This study demonstrated the application of deep learn-
ing model derived from ResNet- 18 for the classifica-
tion of congenital heart disease (CHD) based on ECG 
data, achieving a good balance between performance 
and computational efficiency. Notably, our ResNet- 18 
model outperformed InceptionResNet-V2 in over-
all performance due to its efficient architecture and 
generalizability across CHD subtypes. Our findings 
demonstrate the potential utility of AI-enhanced ECG 
interpretation as a screening tool for hemodynamically 
significant CHD in infants and young children.

Scope of CHD inclusion and model generalizability
A universal screening tool should ideally detect all 
forms of CHD, including rare but critical conditions 
(e.g., single ventricle defects, hypoplastic left heart syn-
drome, Ebstein’s anomaly). However, our primary focus 
was on the detection of hemodynamically significant 

Table 3  Patient distribution and mean age by group

STD standard deviation, CI confidence interval

NOR RHA RHB LHA LHB

Case Number 234 100 291 141 269

Mean ± STD
(95% CI) (m)

20.6 ± 19.0
(18.2–23.0)

16.5 ± 15.3
(13.4 + 19.5)

24.4 ± 18.8
(22.2–26.6)

19.6 ± 13.2
(17.3–21.7)

16.1 ± 15.2
(14.3–18.0)
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acyanotic CHD in infants and young children—a com-
mon but underdiagnosed subgroup—due to the follow-
ing reasons:

•	 Clinical prevalence: Left-to-right shunt lesions (e.g., 
ventricular septal defect, atrial septal defect, pat-
ent ductus arteriosus) and obstructive lesions (e.g., 
coarctation of the aorta, aortic stenosis) constitute the 
majority of CHD cases in this age group.

•	 Screening utility: Acyanotic but hemodynamically sig-
nificant defects often evade detection by pulse oxime-
try screening, as their initial presentation tends to sub-
tle or asymptomatic. Delayed diagnosis increases the 
risk of heart failure.

•	 Common ECG features: The ECG abnormalities 
observed in both common and rare congenital heart 
diseases stem primarily from vector changes. In right 
heart disease, these changes manifest as right axis devi-
ation and right ventricular hypertrophy, whereas in left 
heart disease, they appear as left axis deviation and left 
ventricular hypertrophy.

The authors suspect that our AI model could detect even 
rare, life-threatening congenital heart diseases, provided 
they exhibit pronounced ECG changes. The generaliz-
ability of the model could likely be improved by increasing 
the number of normal ECGs beyond the 234 included in 
this study. Furthermore, a prospective study incorporating 
ECGs from healthy pediatric patients would better reflect 
real-world screening populations.

Performance of proposed model in differentiating left 
and right heart disease
The model derived from ResNet- 18 demonstrated the 
best overall performance in detecting right heart dis-
ease, which is consistent with previous studies that used 
ECG to detect right ventricular hypertrophy. However, 
its performance was significantly lower when applied to 
left heart disease. This suboptimal performance may be 
attributed to developmental factors, such as the rapid 
increase in left ventricular (LV) mass early in life, which 
can obscure ECG markers of left heart disease. Another 
possible explanation is the difficulty in feature extraction, 
as detection of left heart disease traditionally relies on 
echocardiographic parameters, and ECG findings—such 
as left axis deviation—are often subtle and lack reliability.

Detection of ECG abnormalities
One previous study on the detection of ventricular 
hypertrophy in right heart diseases reported accuracy 
of 0.78, which is comparable to the performance of our 
ResNet- 18 model (0.79). Another study using ECG rule-
based criteria for detecting left ventricular hypertrophy 
achieved relatively low accuracy (0.65–0.75) [28]. The 
performance of our AI-based method was also compara-
ble to a prior study that employed similar techniques for 
detecting atrial septal defect (ASD), achieving an AUC of 
0.88 [8].

Rule-based ECG classifications frequently fall within 
the normal range, making them less reliable for ruling out 

Fig. 4  Heart defect and age distributions of patients. The cohort comprised examined 1,035 patients aged 0 to 5, including 234 (22%) with normal 
heart structure (NOR), 100 patients (10%) with non-significant right heart disease (RHA), 291 patients (28%) with significant right heart disease (RHB), 
141 patients (14%) with non-significant left heart disease (LHA), and 269 patients (26%) with significant left heart disease (LHB). The age distribution 
was as follows: 0 years old (416 patients; 40.2%), 1 year (249 patients; 24.1%), 2 years (164 patients; 15.8%), 3 years (99 patients; 9.6%), and 4 years 
(107 patients; 10.3%)
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congenital heart disease (CHD). As a result, it is unrea-
sonable to expect clinicians to diagnose CHD solely 
based on ECG findings. In this study, left ventricular 
hypertrophy (LVH) and right ventricular hypertrophy 
(RVH) were used as benchmarks to ensure alignment 
with standard clinical practice.

Model design, hyperparameters, and oversampling 
strategy
In this study, ResNet- 18 outperformed InceptionResNet-
V2 and NasNetMobile, due to its efficient residual con-
nections and relatively low computational complexity. 
Many studies on the application of AI techniques to the 
interpretation of ECG data employ pretrained models 
utilizing residual networks [12, 29]. In the current study, 
ResNet- 18 achieved accuracy on par with deeper mod-
els, such as ResNet- 50 and ResNet- 101, while requiring 

significantly less training time, making it a better alterna-
tive for real-world deployment.

The pre-trained Inception model, developed by Google 
Research, has been previously applied to AI research on 
CHD [7, 30]. In this study, we selected its latest iteration, 
which emphasizes residual connections for enhanced 
performance. We also utilized the NasNetMobile pre-
trained model, which differs from manually engineered 
architectures by employing neural architecture search 
(NAS) to optimize network design. NasNetMobile is 
specifically tailored for mobile devices, ensuring effi-
cient performance in low-power environments, such as 
medical offices where computational resources tend to be 
limited.

CHD datasets often suffer from class imbalances due 
to the low prevalence of certain conditions. To address 
this issue, we implemented an oversampling strategy, in 

Table 4  Demographic data

Age 0–1 1–2 2–3 3–4 4–5 Subtotal Ratio

Normal heart (NOR) 108 52 27 17 30 234

Ratio 0.462 0.222 0.115 0.073 0.128 1.000

Non-significant right heart disease (RHA)

  ASD 48 17 6 7 5 83 0.830

  PS 6 4 4 1 2 17 0.170

  Subtotal 54 21 10 8 7 100 1.000

  Ratio 0.540 0.210 0.100 0.080 0.070 1.000

Non-significant left heart disease (LHA)

  VSD 18 12 4 4 2 40 0.284

  PDA 12 44 25 10 2 93 0.660

  AS 1 2 1 1 1 6 0.043

  CoA 1 0 1 0 0 2 0.014

  Subtotal 32 58 31 15 5 141 1.000

  Ratio 0.227 0.411 0.220 0.106 0.035 1.000

Significant right heart disease (RHB)

  ASD 19 20 63 33 29 164 0.564

  PS 44 7 4 6 8 69 0.237

  TOF 28 18 6 4 2 58 0.199

  Subtotal 91 45 73 43 39 291 1.000

  Ratio 0.313 0.155 0.251 0.148 0.134 1.000

Significant left heart disease (LHB)

  VSD 84 38 13 11 20 166 0.617

  PDA 37 30 6 3 1 77 0.286

  AS 8 5 3 1 4 21 0.078

  CoA 2 0 1 1 1 5 0.019

  Subtotal 131 73 23 16 26 269 1.000

  Ratio 0.487 0.271 0.086 0.059 0.097 1.000

  Age 0–1 1–2 2–3 3–4 4–5 Total

416 249 164 99 107 1035

  Ratio 0.402 0.241 0.158 0.096 0.103 1.000

Total 1035
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which each 10-s ECG recording was segmented into five 
2-s segments. This segmentation approach allowed us to 
generate a more balanced dataset, reducing the risk of 
the model being biased toward the majority class.

To mitigate concerns regarding temporal dependen-
cies, we applied Continuous Wavelet Transform (CWT), 
which captures information in both the time and fre-
quency domains, minimizing potential distortion.

Future research will explore additional data aug-
mentation techniques and alternative approaches to 
segmentation.

Clinical significance and future implications
It is important to consider that the expertise in pediat-
ric cardiology tends to be concentrated in large medical 
centers. Thus, the proposed AI model could potentially 
expand CHD screening into resource-limited areas. AI-
augmented ECG analysis could serve as a supplementary 

tool for early CHD detection, similar to the way pulse 
oximetry testing is used to screen newborn. Possible 
implementations include the following:

•	 Telemedicine integration: AI models could facilitate 
remote ECG analysis, reducing the need for in-per-
son evaluations by specialists.

•	 Primary care utility: Clinicians without specialized 
training in cardiology could use AI-assisted ECG 
screening to identify at-risk infants who require 
echocardiography.

•	 Integration with other modalities: Previous studies 
have demonstrated that a combination of AI-based 
ECG analysis with human intervention can enhance 
detection performance [31]. Moreover, chest X-ray 
(CXR) imaging has been used to evaluate the hemo-
dynamic significance of CHD [32]. Integrating mul-
tiple modalities could lead to the development of a 
versatile screening models.

Table 5  Impact of significance in prediction of CHD: results of transfer learning using various pre-trained models

Mean ± SD (95% CI)

SD standard deviation, CI confidence interval

NOR vs RHA + RHB

ResNet- 18 InceptionResNet-V2 NASNetMobile

Sensitivity 0.719 ± 0.029 (0.683–0.755) 0.804 ± 0.049 (0.742–0.865) 0.750 ± 0.041 (0.699–0.800)

Specificity 0.633 ± 0.044 (0.579–0.688) 0.551 ± 0.051 (0.488–0.615) 0.609 ± 0.078 (0.512–0.706)

Accuracy 0.686 ± 0.033 (0.645–0.727) 0.707 ± 0.041 (0.656–0.758) 0.696 ± 0.012 (0.681–0.711)

F1 score 0.739 ± 0.028 (0.704–0.773) 0.772 ± 0.035 (0.728–0.816) 0.752 ± 0.011 (0.738–0.767)

AUROC 0.738 ± 0.029 (0.702–0.774) 0.758 ± 0.027 (0.725–0.791) 0.757 ± 0.022 (0.730–0.785)

NOR + RHA vs RHB

ResNet- 18 InceptionResNet-V2 NASNetMobile

Sensitivity 0.735 ± 0.032 (0.695–0.775) 0.759 ± 0.052 (0.695–0.824) 0.747 ± 0.074 (0.655–0.839)

Specificity 0.839 ± 0.022 (0.812–0.865) 0.803 ± 0.055 (0.734–0.872) 0.824 ± 0.043 (0.770–0.878)

Accuracy 0.789 ± 0.009 (0.778–0.799) 0.782 ± 0.036 (0.737–0.827) 0.787 ± 0.019 (0.764–0.811)

F1 score 0.770 ± 0.014 (0.753–0.787) 0.770 ± 0.040 (0.721–0.819) 0.770 ± 0.034 (0.728–0.811)

AUROC 0.852 ± 0.011 (0.838–0.866) 0.867 ± 0.020 (0.842–0.892) 0.865 ± 0.020 (0.840–0.890)

NOR vs LHA + LHB

ResNet- 18 InceptionResNet-V2 NASNetMobile

Sensitivity 0.617 ± 0.037 (0.571–0.663) 0.640 ± 0.018 (0.618–0.661) 0.547 ± 0.037 (0.501–0.592)

Specificity 0.857 ± 0.044 (0.803–0.911) 0.834 ± 0.045 (0.778–0.890) 0.895 ± 0.031 (0.856–0.934)

Accuracy 0.704 ± 0.010 (0.691–0.717) 0.710 ± 0.011 (0.697–0.724) 0.673 ± 0.017 (0.652–0.695)

F1 score 0.726 ± 0.017 (0.704–0.747) 0.737 ± 0.008 (0.727–0.747) 0.680 ± 0.025 (0.649–0.711)

AUROC 0.817 ± 0.021 (0.790–0.843) 0.802 ± 0.019 (0.777–0.826) 0.786 ± 0.025 (0.754–0.817)

NOR + LHA vs LHB

ResNet- 18 InceptionResNet-V2 NASNetMobile

Sensitivity 0.626 ± 0.060 (0.551–0.701) 0.696 ± 0.038 (0.649–0.744) 0.481 ± 0.022 (0.454–0.509)

Specificity 0.815 ± 0.014 (0.797–0.832) 0.779 ± 0.043 (0.725–0.832) 0.912 ± 0.013 (0.895–0.929)

Accuracy 0.736 ± 0.033 (0.695–0.777) 0.744 ± 0.033 (0.704–0.785) 0.732 ± 0.008 (0.721–0.742)

F1 score 0.664 ± 0.050 (0.602–0.725) 0.695 ± 0.035 (0.652–0.738) 0.600 ± 0.016 (0.580–0.620)

AUROC 0.804 ± 0.031 (0.765–0.842) 0.816 ± 0.035 (0.773–0.859) 0.814 ± 0.017 (0.793–0.835)
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This study was subject to several limitations, which 
should be considered in the interpretation of our find-
ings. First, the retrospective nature of this study and its 
reliance on single-center data highlight the need for 
future multi-center studies to verify the generalizability 
of the model. Moreover, the lack of an external test set 
means that further external validation will be required to 
assess its real-world applicability.

Another limitation is the inclusion of only a few rare 
CHD cases, which restricted the ability of the model to 
generalize across a broad spectrum of congenital heart 
conditions. Expanding the dataset to include more 
diverse CHD subtypes would improve model robustness. 
It is also important to consider the potential ECG acqui-
sition bias, as differences in operator techniques and 
device settings may impact model performance. Future 
studies should evaluate the model using ECG records 

acquired by multiple operators under various operating 
conditions to ensure its reliability across different clinical 
settings.

Lastly, the influence of age-related changes on ECG 
interpretation suggests a need for further age-stratified 
analysis. Developing age-specific models could enhance 
diagnostic accuracy, particularly for younger patients 
with ECG markers that vary significantly with cardiac 
maturation.

Conclusion
This study marks a significant advancement in AI-
assisted CHD screening for young children. Our ResNet- 
18-based model demonstrated stable performance in 
the detection of hemodynamically significant CHD, 
effectively balancing accuracy and computational effi-
ciency. The proposed AI-driven model outperformed 

Table 6  Result of clinically-applicable model (NOR + RHA + LHA vs. RHB + LHB)

Mean ± SD (95% CI)

SD standard deviation, CI confidence interval, NOR normal, RHA non-significant right heart disease, LHA non-significant left heart disease, RHB significant right heart 
disease, LHB significant left heart disease, AUC​ area under curve

Sensitivity Specificity Accuracy F1 score AUC​

ResNet- 18 0.759 ± 0.029
(0.723—0.795)

0.715 ± 0.015
(0.695—0.734)

0.739 ± 0.012
(0.724—0.753)

0.758 ± 0.015
(0.740—0.776)

0.810 ± 0.013
(0.794—0.825)

InceptionResNet-V2 0.624 ± 0.078
(0.528—0.721)

0.799 ± 0.015
(0.780—0.818)

0.704 ± 0.043
(0.651—0.758)

0.693 ± 0.058
(0.620—0.765)

0.791 ± 0.028
(0.757—0.826)

NASNetMobile 0.765 ± 0.071
(0.677—0.852)

0.597 ± 0.089
(0.486—0.707)

0.687 ± 0.017
(0.666—0.707)

0.724 ± 0.023
(0.696—0.752)

0.771 ± 0.020
(0.746—0.796)

Fig. 5  Boxplots illustrating 5-fold cross-validation results in predicting clinically significant CHD. The Nasnet- 18 model demonstrated the best 
detection performance across all metrics. InceptionResNetV2 also demonstrates strong performance, however it presented variability in sensitivity 
and F1-scores
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conventional ECG-based screening methods that rely on 
rule-based criteria. When used as a complement to pulse 
oximetry screening in newborns, this approach could 
facilitate early detection of conditions requiring interven-
tion, thereby reducing the risk of complications in chil-
dren aged 0 to 5, a period of rapid cardiac development.
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